

[Praba, 6(6): June 2019] DOI-10.5281/zenodo.3268840

GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES SEMI-STRONG COLOR PARTITION OF A GRAPH

V. Praba

Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620 002, Tamilnadu, India

ABSTRACT

Claude Berge introduced the concept of strong stable sets in a graph. A subset S of a graph G = (V, E) is a strong stable set if $|N[v] \cap S| \le 1$ for every $v \in V(G)$. Relaxing this condition Prof.E. Sampath kumar introduced semi-strong sets in graphs as those sets for which $|N(v) \cap S| \leq 1$ for every $v \in V$ (G).Resolvability is a well-studied concept. Combining these two, resolving semi-strong color partition is defined and studied in this paper. Classification: 05C15, 05C70

Keywords: Resolving semi-strong color partition.

I. **INTRODUCTION**

A subset S of a graph G = (V, E) is called a semi-strong set if $|N[v] \cap S| \le 1$ for every $v \in V(G)$.

A subset S = { $x_1, x_2, x_3, \dots, x_k$ } of a connected graph G is called a resolving set if the code $C(u:S)=(d(u, x_1), d(u, x_1), \dots, d(u, x_1))$ is different for different u. A partition of V(G) into subsets where each subset considered is a resolving semi-strong set. The Minimum cardinality of such a partition denoted by $\chi_{snd}(G)$ is found out for some well-known graphs. Further, graphs with $\chi_{spd}(G)=2, \chi_{spd}(G)=n$ are determined.

II. **RESOLVING SEMI- STRONG COLOR PARTITION**

Definition 1.1.Let G be a finite, simple, connected, undirected graph. A partition $\Pi = \{V_1, V_2, \dots, V_k\}$ is called a resolving semi strong color partition if Π is a semi-strong color partition and the k-vector $(v|\Pi)=(d(v,v_1),d(v,v_2),...,d(v,v_k))$ is distinct for different v in V (G). The minimum cardinality of a resolving semistrong color partition of G is called semi-strong color class partition dimension of G and is denoted by $\chi_{spd}(G)$. The trivial partition namely $\{v_1\}, \{v_2\}, \dots, \{v_k\}\}$ where V(G)= $\{v_1, v_2, .v_k\}$ is a resolving semi-strong color class partition of G.

Remark 1.2. (i) $\chi_s(G) \leq \chi_{spd}(G)$. (ii) $pd(G) \leq \chi_{spd}(G)$

Example 1.3.Let G be the graph given in Fig.1.1: $\chi_s(G) = 5$. Therefore $\chi_{snd}(G)=5$.

(C)Global Journal Of Engineering Science And Researches

[*Praba*, 6(6): June 2019] DOI- 10.5281/zenodo.3268840

ISSN 2348 - 8034 Impact Factor- 5.070

 $\begin{array}{l} \textbf{Example1.4. Let } G = \ P_n. \ Let \ V \ (P_n) = \ \{u_1, u_2, \ldots, u_n\}, n \geq 3. Let \ \Pi = \!\{\{u_1\}, \ \{u_2, u_3, u_6, u_7, \ldots\}, \{u_4\}, \{u_5\}, \{u_8\}, \ldots\}. \\ \Pi \ \text{ is a minimum resolving semi-strong color partition of } P_n. \ Therefore \ \chi_{spd}(P_n) = 3, \ n \geq 4. \ \text{when } n = 1, \ 2, \ 3 \text{then}, \\ \chi_{spd}(P_1) = 1, \ \chi_{spd}(P_2) = 2, \ \chi_{spd}(P_3) = 2. \end{array}$

 $\chi_{spd}(G)$ for some well-known Graphs

Proposition:

1. $\chi_{spd}(K_n) = n.$ 2. $\chi_{spd}(K_{1,n}) = n.$ 3. $\chi_{spd}(K_{m,n}) = \begin{cases} n & \text{if } m < n \\ n+1 & \text{if } m = n \end{cases}$ 4. $\chi_{spd}(W_n) = n$ 5. $\chi_{spd}(P) = 5$ where P is the Petersen graph.

Proof :Let V (P) = { v_1 , v_2 , v_3 , v_4 , v_5 , w_1 , w_2 , w_3 , w_4 , w_5 }. Consider the Petersen graph given in Figure 1.2.Here pd(P) = 4, but $\chi_s(P) = 5$. Also $\chi_{snd}(P) = 5$.

- 6. $\chi_{spd}(P_n) = \begin{cases} 3 & \text{if } n \ge 4 \\ 2 & \text{if } n = 2, 3 \\ 1 & \text{if } n = 1 \end{cases}$
- 7. $\chi_{spd}(C_n) = 3$ for every $n \ge 3$

Proof: Case 1: Let $n \equiv 0 \pmod{4}$. Let n = 4k.

Let V (C_n) = {{u₁, u₂, . . , u_{4k}}. Let Π = {{u_{4k-2}, u_{4k-1}}, {u₁, u₂, u₅, u₆, u₉, u₁₀, . . . , u_{4k-7}, u_{4k-6}, u_{4k-3}}, {u₃, u₄, u₇, u₈, . . . , u_{4k-5}, u_{4k-4}, u_{4k}}. Then Π is a resolving semi-strong color partition of C_n. Therefore χ_{spd} C_n) \leq 3. Suppose χ_{spd} (C_n) = 1. Then n = 1, a contradiction. If χ_{spd} (C_n) \neq 2,since χ_{spd} (G) = 2 if and only if G =P₂ orP₃. Therefore χ_{spd} (C_n) = 3 when n \equiv 0(mod 4).

Case 2: Let $n \equiv 1 \pmod{4}$. Let n = 4k + 1.

Let V (C_n) = {u₁, u₂, ..., u_{4k+1}}. Let $\Pi = \{\{u_{4k+1}\}, \{u_1, u_2, u_5, u_6, \dots, u_{4k-3}, u_{4k-2}\}, \{u_3, u_4, u_7, u_8, \dots, u_{4k-1}, u_{4k}\}$. Then it can be easily verified that Π is a resolving semi-strong color partition of C_n. Therefore, $\chi_{spd}(C_n) \leq 3$. But $\chi_{spd}(C_n) \geq 3$, since $\chi_{spd}(G) = 2$ if and only if $G = P_2$ or P_3 and $\chi_{spd}(G) = 1$ if and only if $G = K_1$. Therefore, $\chi_{spd}(C_n) = 3$ when $n \equiv 1 \pmod{4}$.

Case 3: Let $n \equiv 2 \pmod{4}$. Let n = 4k + 2. Let $V(C_n) = \{u_1, u_2, \dots, u_{4k+2}\}.$

(C)Global Journal Of Engineering Science And Researches

[Praba, 6(6): June 2019] DOI- 10.5281/zenodo.3268840

ISSN 2348 - 8034 Impact Factor- 5.070

Let $\Pi = \{\{u_{4k+1}, u_{4k+2}\}, \{u_1, u_2, u_5, u_6, \dots, u_{4k-3}, u_{4k-2}\}, \{u_3, u_4, u_7, u_8, \dots, u_{4k-1}, u_{4k}\}$. Then it can be easily verified that Π is a resolving semi-strong color partition of C_n . Therefore, $\chi_{spd}(C_n) \leq 3$. But $\chi_{spd}(C_n) \geq 3$, since $\chi_{spd}(G) = 2$ if and only if $G = P_2$ or P_3 and $\chi_{spd}(G) = 1$ if and only if $G = K_1$. Therefore, $\chi_{spd}(C_n) = 3$ when $n \equiv 2 \pmod{4}$.

Case 4: Let $n \equiv 3 \pmod{4}$. Let n = 4k + 3.

Let $V(C_n) = \{u_1, u_2, \ldots, u_{4k+3}\}$. Let $\Pi = \{\{u_{4k+2}\}, \{u_1, u_2, u_5, u_6, \ldots, u_{4k-3}, u_{4k-2}, u_{4k+1}\}, \{u_3, u_4, u_7, u_8, \ldots, u_{4k-1}, u_{4k}, u_{4k+3}\}$. Then it can be easily verified that Π is a resolving semi-strong color partition of C_n . Therefore $\chi_{spd}(C_n) \leq 3$. But $\chi_{spd}(C_n) \geq 3$. Therefore $\chi_{spd}(C_n) = 3$ when $n \equiv 3 \pmod{4}$. Hence $\chi_{spd}(C_n) = 3$ for every $n \geq 3$.

Theorem 1.5. $\chi_{spd}(G) = 2$ if and only if $G = P_2 \text{or } P_3$.

Proof: Let V (G) = {u₁, u₂, . . .,u_n}. Let $\chi_{spd}(G) = 2$. Let $\Pi = \{V_1, V_2\}$ be a semi strong color class partition of G. Then there exist vertices $u_i \in V_1$, $u_j \in V_2$ such that u_i and u_j are adjacent (since G is connected). Suppose u_i is adjacent with v_{j1} and v_{j2} in V_2 . r ($v_{j1} | \Pi$) = (1, 0), r ($v_{j2} | \Pi$) = (1, 0), a contradiction. Therefore, u_i is a unique vertex in V_1 that is adjacent to a vertex in V_2 and u_j is the unique vertex in V_2 that is adjacent to a vertex in V_1 . Suppose u_{i1} is not adjacent with any vertex of V_1 . Then $r(u_i | \Pi) = (0, 1)$ and r ($u_{i1} | \Pi) = (0, 1)$, a contradiction. Therefore, u_i is adjacent with at least one vertex of V_1 and not adjacent with any vertex of V_2 . u_i is adjacent with at most one vertex in V_1 . For if u_i is adjacent with u_1, u_2 in V_1 , then $r(u_1 | \Pi) = (0, 2)$ and $r(u_2 | \Pi) = (0, 2)$, a contradiction. Therefore, u_i is adjacent with exactly one vertex in V_1 . Let w be a unique vertex in V_1 which is adjacent with u_i . If w is adjacent with another vertex in V_1 , then V_1 is not semi strong. Therefore, w is adjacent with only u_i . Therefore, u_i is a component of V_1 . Further w is not adjacent with any vertex of V_2 . For if w is adjacent with $u_i \in V_2$, then $r(v_j | \Pi) = r(w_1 | \Pi)$, a contradiction. If V_1 contains a third vertex x distinct from u_i and w. Then x is adjacent to some vertex of V_2 , a contradiction, since that vertex w_1 and v_j have the same coordinate. Therefore $|V_1| = 2$. If $|V_2| \ge 2$, then proceeding as before $|V_2| = 2$ and $G = P_4$. But $\chi_{spd}(P_4) = 3$, a contradiction. Therefore $|V_2| \le 1$. Hence $|V_2| = 1$ we get $G = P_3$. If $|V_1| = 1$, then $G = P_2$ or P_3 . Therefore $\chi_{spd}(G) = 2$ if and only if $G = P_2$ or P_3 .

Theorem 1.6.Let G be a graph with full degree vertex, say u. Then $\chi_{spd}(G) = n$ if and only if the subgraph induced by a vertex of G other than u has no isolates.

Proof: Suppose G has a full degree vertex say u. Let $v_1, v_2, \ldots, v_{n-1}$ are the vertices of G adjacent with u. Then no two vertices $v_i, v_i, i \neq j$ belong to the same color class of a resolving semi strong color partition of G.

Case1:Suppose the subgraph induced by vertices of G other than u has an isolate say v_1 . Let $\Pi = \{\{u, v_1\}, \{v_2\}, \ldots, \{v_{n-1}\}\}$. By a hypothesis, v_i is adjacent with u for every i, v_i is not adjacent with v_1 for any i. Clearly u, v_1 are resolved by any v_i , $(i \ge 2)$. Therefore, $\chi_{spd}(G) = n - 1$.

Case 2: Suppose the subgraph induced by vertices of G other than u has no isolate. Then Π is not a semi strong color partition of G.Therefore, $\Pi_1 = \{\{u\}, \{v_1\}, ..., \{v_{n-1}\}\}\$ is a resolving semi strong color partition of G and it is minimum. That is $\chi_{spd}(G) = n$.

Theorem 1.7.Let G be a connected graph. $\chi_{spd}(G) = n$ if and only if N (G) = K_n.

Proof: Let $\chi_{spd}(G) = n$. Let $V(G) = \{u_1, u_2, \ldots, u_n\}$. Suppose diam $(G) = k \ge 3$.Let $u = u_1, u_2, \ldots, u_{k+1} = v$ be a diametrical path in G. Let $\Pi = \{\{u, v\}, \{V_2\}, ..., \{V_{n-1}\}\}\{\{u, v\}, \{V_2\}, \ldots, \{V_{n-1}\}\}$ where V_2, \ldots, V_{n-1} are singletons .u and v are resolved by $\{u_2\}$. Then Π is are solving semi strong color partition of G. Therefore, $\chi_{spd}(G) \le n-1$, a contradiction. Therefore, diam $(G) \le 2$. Suppose u_1 and u_2 are adjacent and u_1u_2 is not the edge of a triangle. Let $\Pi_1 = \{\{u_1, u_2\}, V_2, \ldots, V_{n-1}\}$ where $V_2, \ldots, V_{n-1}.u_1$ and u_2 are resolved by $\{u_3\}$ where u_1 is adjacent with u_3 and u_2 is not adjacent with u_3 . Then Π_1 is a resolving semi strong color partition of G, a contradiction.

246

[Praba, 6(6): June 2019] DOI- 10.5281/zenodo.3268840

ISSN 2348 - 8034 Impact Factor- 5.070

Let $|V(G)| \ge 4$. If u_1 and u_2 are adjacent. Then u_1u_2 is an edge of triangle. Therefore, $N(G) = K_n$. Suppose |V(G)| = 3. Then $G = P_3$ or K_3 . $\chi_{spd}(P_3) = 2 <3$. Therefore, $G = K_3$. Therefore, $N(G) = K_n$. The converse is obvious.

Theorem 1.8. For $m \ge 3$, χ_{spd} (K_{a1}, a₂,..., a_m) = a₁ + a₂ + . . . + a_m.

Proof: $\chi_s(K_{a1,a2,...,a_m}) = a_1 + a_2 + ... + a_m$. Further $\chi_s(K_{a1,a2,...,a_m}) \le \chi_{spd}(K_{a1,a2,...,a_m})$. Therefore, $\chi_{spd}(K_{a1,a2,...,a_m}) = a_1 + a_2 + ... + a_m$.

Theorem 1.9.Let $G = K_m(a_1, a_2, ..., a_m)$. Then $\chi_{spd}(G) = m + max\{a_i\}, 1 \le i \le m$.

Proof: Let $G = K_m(a_1, a_2, ..., a_m)$. Let $V(G) = \{u_1, u_2, ..., u_m, u_{1,1}, u_{1,2}, ..., u_{1,a_1}, ..., u_{m,1}, u_{m,2}, ..., u_{m,a_m}\}$ where $V(K_m) = \{u_1, u_2, ..., u_m\}$. Let $\Pi = \{\{u_1\}, \{u_2\}, ..., \{u_m\}, \{u_{1,1}, u_{2,1}, ..., u_{m,1}\}, ..., \}$. Then Π is a resolving semi strong color partition of G. Therefore, $\chi_{spd}(G) \le m + \max\{a_i\}, 1 \le i \le m$. Since $\chi_s(G) \le \chi_{spd}(G)$ and $\chi_s(G) = m + \max\{a_i\}, 1 \le i \le m$.

REFERENCES

- 1. C. Berge, Graphs and Hyper graphs, North Holland, Amsterdam, 1973.
- 2. R. C. Brigham, G. Chartrand, R. D. Dutton and P. Zhang, Resolving domination in graphs, Math. Bohem. To appear.
- 3. G. Chartrand, E. Salehi and P. Zhang, The partition dimension of a graph, Aequationes Math.59 (2000) 45– 54.
- 4. G. Jothilakshmi, A. P. Pushpalatha, S. Suganthi and V. Swaminathan, (k,r)Semi Strong Chromatic Number of a Graph, International Journal of ComputerApplications, Vol. 21, No. 2, 2011.
- 5. E. Sampathkumar and L. PushpaLatha, Semi-Strong Chromatic Number of Graph, Indian Journal of Pure and Applied Mathematics, 26(1): 35-40,1995.
- 6. E. Sampathkumar and C. V. Venkatachalam, Chromatic partition of a graph, Discrete Mathematics, 74, 1989, 227–239..

