Global Journal of Engineering Science and Researches SEMI-STRONG COLOR PARTITION OF A GRAPH
 V. Praba

Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620 002,
Tamilnadu, India

Abstract

Claude Berge introduced the concept of strong stable sets in a graph. A subset S of a graph $G=(V, E)$ is a strong stable set if $|N[v] \cap S| \leq 1$ for every $\mathrm{v} \in V(G)$. Relaxing this condition Prof.E. Sampath kumar introduced semi-strong sets in graphs as those sets for which $|N(v) \cap S| \leq 1$ for every $v \in V$ (G).Resolvability is a well-studied concept. Combining these two, resolving semi-strong color partition is defined and studied in this paper. Classification: 05C15, 05C70

Keywords: Resolving semi-strong color partition.

I. INTRODUCTION

A subset S of a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is called a semi-strong set if $|N[v] \cap S| \leq 1$ for every $\mathrm{v} \in V(G)$.
A subset $\mathrm{S}=\left\{x_{1}, x_{2}, x_{3}, \ldots \ldots, x_{k}\right\}$ of a connected graph G is called a resolving set if the code $\mathrm{C}(\mathrm{u}: \mathrm{S})=\left(\mathrm{d}\left(\mathrm{u}, x_{1}\right), d\left(u, x_{1}\right), \ldots \ldots, d\left(u, x_{1}\right)\right)$ is different for different u . A partition of $\mathrm{V}(\mathrm{G})$ into subsets where each subset considered is a resolving semi-strong set. The Minimum cardinality of such a partition denoted by $\chi_{s p d}(G)$ is found out for some well-known graphs. Further, graphs with $\chi_{s p d}(G)=2, \chi_{s p d}(G)=\mathrm{n}$ are determined.

II. RESOLVING SEMI- STRONG COLOR PARTITION

Definition 1.1.Let G be a finite, simple, connected, undirected graph. A partition $\Pi=\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{k}}\right\}$ is called a resolving semi strong color partition if Π is a semi-strong color partition and the k-vector $(\mathrm{v} \mid \Pi)=\left(\mathrm{d}\left(\mathrm{v}, \mathrm{v}_{1}\right), \mathrm{d}\left(\mathrm{v}, \mathrm{v}_{2}\right), \ldots, \mathrm{d}\left(\mathrm{v}, \mathrm{v}_{\mathrm{k}}\right)\right)$ is distinct for different v in $\mathrm{V}(\mathrm{G})$. The minimum cardinality of a resolving semistrong color partition of G is called semi-strong color class partition dimension of G and is denoted by $\chi_{\text {spd }}$ (G). The trivial partition namely $\left\{\left\{\mathrm{v}_{1}\right\},\left\{\mathrm{v}_{2}\right\} \ldots,\left\{\mathrm{v}_{\mathrm{k}}\right\}\right\}$ where $\mathrm{V}(\mathrm{G})=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, . \mathrm{v}_{\mathrm{k}}\right\}$ is a resolving semi-strong color class partition of G.

Remark 1.2. (i) $\chi_{s}(\mathrm{G}) \leq \chi_{\text {spd }}(\mathrm{G})$.
(ii) $\operatorname{pd}(\mathrm{G}) \leq \chi_{\text {spd }}$ (G)

Example 1.3.Let G be the graph given in Fig. $1.1: \chi_{\mathrm{s}}(\mathrm{G})=5$. Therefore $\chi_{\text {spd }}(\mathrm{G})=5$.

G
Figure 1.1
[Praba, 6(6): June 2019]
ISSN 2348-8034
DOI- 10.5281/zenodo. 3268840
Impact Factor- $\mathbf{5 . 0 7 0}$
Example1.4. Let $\mathrm{G}=\mathrm{P}_{\mathrm{n}}$. Let $\mathrm{V}\left(\mathrm{P}_{\mathrm{n}}\right)=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right\}, \mathrm{n} \geq 3 . \operatorname{Let} \Pi=\left\{\left\{\mathrm{u}_{1}\right\},\left\{\mathrm{u}_{2}, \mathrm{u}_{3}, \mathrm{u}_{6}, \mathrm{u}_{7}, \ldots\right\},\left\{\mathrm{u}_{4}\right\},\left\{\mathrm{u}_{5}\right\},\left\{\mathrm{u}_{8}\right\}, \ldots\right\}$. Π is a minimum resolving semi-strong color partition of P_{n}. Therefore $\chi_{\text {spd }}\left(P_{n}\right)=3, n \geq 4$. when $n=1,2$, 3then, $\chi_{\text {spd }}\left(\mathrm{P}_{1}\right)=1, \chi_{\text {spd }}\left(\mathrm{P}_{2}\right)=2, \chi_{\text {spd }}\left(\mathrm{P}_{3}\right)=2$.

$\chi_{\text {spd }}(\mathbf{G})$ for some well-known Graphs

Proposition:

1. $\chi_{\text {spd }}\left(K_{n}\right)=n$.
2. $\chi_{\text {spd }}\left(\mathrm{K}_{1, \mathrm{n}}\right)=\mathrm{n}$.
3. $\chi_{\text {spd }}\left(K_{m, n}\right)=\left\{\begin{array}{cc}n & \text { if } m<n \\ n+1 & \text { if } m=n\end{array}\right.$
4. $\chi_{\text {spd }}\left(W_{n}\right)=n$
5. $\chi_{\text {spd }}(P)=5$ where P is the Petersen graph.

Proof :Let $V(P)=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}, \mathrm{w}_{4}, \mathrm{w}_{5}\right\}$. Consider the Petersen graph given in Figure 1.2.Here $\operatorname{pd}(\mathrm{P})=4$, but $\chi_{\mathrm{s}}(\mathrm{P})=5$. Also $\chi_{\text {spd }}(\mathrm{P})=5$.

Figure 1.2
6. $\quad \chi_{\text {spd }}\left(P_{n}\right)=\left\{\begin{array}{c}3 \text { if } n \geq 4 \\ 2 \text { if } n=2,3 \\ 1 \text { if } n=1\end{array}\right.$
7. $\quad \chi_{\text {spd }}\left(\mathrm{C}_{\mathrm{n}}\right)=3$ for every $\mathrm{n} \geq 3$

Proof: Case 1: Let $\mathrm{n} \equiv 0(\bmod 4)$. Let $\mathrm{n}=4 \mathrm{k}$.
Let $\mathrm{V}\left(\mathrm{C}_{\mathrm{n}}\right)=\left\{\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathrm{u}_{4 k}\right\}\right.$. Let $\Pi=\left\{\left\{\mathbf{u}_{4 k-2}, \mathrm{u}_{4 k-1}\right\},\left\{\mathrm{u}_{1}, \mathbf{u}_{2}, \mathrm{u}_{5}, \mathrm{u}_{6}, \mathrm{u}_{9}, \mathrm{u}_{10}, \ldots, \mathrm{u}_{4 k-7}, \mathrm{u}_{4 k-6}, \mathrm{u}_{4 k-3}\right\},\left\{\mathrm{u}_{3}, \mathrm{u}_{4}, \mathrm{u}_{7}\right.\right.$, $\left.\left.\mathrm{u}_{8}, \ldots, \mathrm{u}_{4 \mathrm{k}-5}, \mathrm{u}_{4 \mathrm{k}-4,}, \mathrm{u}_{4 \mathrm{k}}\right\}\right\}$. Then Π is a resolving semi-strong color partition of C_{n}. Therefore $\chi_{\text {spd }} \mathrm{C}_{\mathrm{n}}$) ≤ 3. Suppose $\chi_{\text {spd }}\left(\mathrm{C}_{\mathrm{n}}\right)=1$. Then $\mathrm{n}=1$, a contradiction. If $\chi_{\text {spd }}\left(\mathrm{C}_{\mathrm{n}}\right) \neq 2$, since $\chi_{\text {spd }}(\mathrm{G})=2$ if and only if $\mathrm{G}=\mathrm{P}_{2}$ orP P_{3}. Therefore $\chi_{\text {spd }}\left(\mathrm{C}_{\mathrm{n}}\right)=3$ when $\mathrm{n} \equiv 0(\bmod 4)$.

Case 2: Let $\mathrm{n} \equiv 1(\bmod 4)$. Let $\mathrm{n}=4 \mathrm{k}+1$.
Let $\mathrm{V}\left(\mathrm{C}_{\mathrm{n}}\right)=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{4 k+1}\right\}$. Let $\Pi=\left\{\left\{\mathrm{u}_{4 k+1}\right\},\left\{\mathrm{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{5}, \mathrm{u}_{6}, \ldots, \mathbf{u}_{4 k-3}, \mathrm{u}_{4 k-2}\right\},\left\{\mathrm{u}_{3}, \mathrm{u}_{4}, \mathrm{u}_{7}, \mathrm{u}_{8}, \ldots, \mathrm{u}_{4 k-1}, \mathrm{u}_{4 k}\right\}\right.$. Then it can be easily verified that Π is a resolving semi-strong color partition of C_{n}. Therefore, $\chi_{\text {spd }}\left(\mathrm{C}_{\mathrm{n}}\right) \leq 3$. But $\chi_{\text {spd }}\left(\mathrm{C}_{\mathrm{n}}\right) \geq 3$, since $\chi_{\text {spd }}(G)=2$ if and only if $G=P_{2}$ or P_{3} and $\chi_{\mathrm{spd}}(\mathrm{G})=1$ if and only if $G=K_{1}$.
Therefore, $\chi_{\text {spd }}\left(\mathrm{C}_{\mathrm{n}}\right)=3$ when $\mathrm{n} \equiv 1(\bmod 4)$.
Case 3: Let $\mathrm{n} \equiv 2(\bmod 4)$. Let $\mathrm{n}=4 \mathrm{k}+2$.
Let $V\left(C_{n}\right)=\left\{u_{1}, u_{2}, \ldots, u_{4 k+2}\right\}$.

THOMSON REUTERS
[Praba, 6(6): June 2019]
ISSN 2348-8034
DOI- 10.5281/zenodo. 3268840
Impact Factor- $\mathbf{5 . 0 7 0}$
Let $\Pi=\left\{\left\{\mathbf{u}_{4 k+1}, u_{4 k+2}\right\},\left\{u_{1}, u_{2}, u_{5}, u_{6}, \ldots, u_{4 k-3}, u_{4 k-2}\right\},\left\{u_{3}, u_{4}, u_{7}, u_{8}, \ldots, u_{4 k-1}, u_{4 k}\right\}\right.$. Then it can be easily verified that Π is a resolving semi-strong color partition of C_{n}. Therefore, $\chi_{\mathrm{spd}}\left(\mathrm{C}_{\mathrm{n}}\right) \leq 3$. But $\chi_{\mathrm{spd}}\left(\mathrm{C}_{\mathrm{n}}\right) \geq 3$, since $\chi_{\mathrm{spd}}(\mathrm{G})=2$ if and only if $\mathrm{G}=\mathrm{P}_{2}$ or P_{3} and $\chi_{\text {spd }}(\mathrm{G})=1$ if and only if $\mathrm{G}=\mathrm{K}_{1}$.
Therefore,$\chi_{\text {spd }}\left(C_{n}\right)=3$ when $n \equiv 2(\bmod 4)$.
Case 4: Let $\mathrm{n} \equiv 3(\bmod 4)$. Let $\mathrm{n}=4 \mathrm{k}+3$.
Let $V\left(\mathrm{C}_{\mathrm{n}}\right)=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{4 \mathrm{k}+3}\right\}$.
Let $\Pi=\left\{\left\{\mathrm{u}_{4 k+2}\right\},\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{5}, \mathrm{u}_{6}, \ldots, \mathrm{u}_{4 k-3}, \mathrm{u}_{4 k-2}, \mathrm{u}_{4 k+1}\right\},\left\{\mathrm{u}_{3}, \mathrm{u}_{4}, \mathrm{u}_{7}, \mathrm{u}_{8}, \ldots, \mathrm{u}_{4 k-1}, \mathrm{u}_{4 k}, \mathrm{u}_{4 k+3}\right\}\right.$. Then it can be easily verified that Π is a resolving semi-strong color partition of C_{n}. Therefore $\chi_{\text {spd }}\left(\mathrm{C}_{\mathrm{n}}\right) \leq 3$. But $\chi_{\text {spd }}\left(\mathrm{C}_{\mathrm{n}}\right) \geq 3$.
Therefore, $\chi_{\mathrm{spd}}\left(\mathrm{C}_{\mathrm{n}}\right)=3$ when $\mathrm{n} \equiv 3(\bmod 4)$.
e
Hence $\chi_{\text {spd }}\left(\mathrm{C}_{\mathrm{n}}\right)=3$ for every $\mathrm{n} \geq 3$.
Theorem 1.5. $\chi_{\mathrm{spd}}(\mathrm{G})=2$ if and only if $\mathrm{G}=\mathrm{P}_{2}$ or P_{3}.
Proof: Let $V(G)=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{n}\right\}$. Let $\chi_{\text {spd }}(\mathrm{G})=2$. Let $\Pi=\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}\right\}$ be a semi strong color class partition of G . Then there exist vertices $u_{i} \in V_{1}, u_{j} \in V_{2}$ such that u_{i} and u_{j} are adjacent (since G is connected). Suppose u_{i} is adjacent with $v_{j 1}$ and $v_{j 2}$ in V_{2}. $r\left(v_{j} \mid \Pi\right)=(1,0), r\left(v_{j} \mid \Pi\right)=(1,0)$, a contradiction. Therefore, u_{i} is a unique vertex in V_{1} that is adjacent to a vertex in V_{2} and u_{j} is the unique vertex in V_{2} that is adjacent to a vertex in V_{1}. Suppose $\left|V_{1}\right| \geq 2$. Let $u_{i 1} \in V_{1}$. Suppose $u_{i 1}$ is not adjacent with any vertex of V_{1}.Then $r\left(u_{i} \mid \Pi\right)=(0,1)$ and $r\left(u_{i 1} \mid \Pi\right)=(0,1)$, a contradiction. Therefore, $u_{i 1}$ is adjacent with at least one vertex of V_{1} and not adjacent with any vertex of $V_{2} \cdot u_{i}$ is adjacent with at most one vertex in V_{1}. For if u_{i} is adjacent with u_{1}, u_{2} in V_{1}, then $r\left(u_{1} \mid \Pi\right)=(0,2)$ and $r\left(u_{2} \mid \Pi\right)=(0,2)$,a contradiction. Therefore, u_{i} is adjacent with exactly one vertex in V_{1}. Let w be a unique vertex in V_{1} which is adjacent with u_{i}. If w is adjacent with another vertex in V_{1}, then V_{1} is not semi strong. Therefore, w is adjacent with only u_{i}. Therefore, $u_{i} w$ is a component of V_{1}. Further w is not adjacent with any vertex of V_{2}. For if w is adjacent with $w_{1} \in V_{2}$, then $r\left(v_{j} \mid \Pi\right)=r\left(w_{1} \mid \Pi\right)$, a contradiction. If V_{1} contains a third vertex x distinct from u_{i} and w. Then x is adjacent to some vertex of V_{2}, a contradiction, since that vertex w_{1} and v_{j} have the same coordinate. Therefore $\left|\mathrm{V}_{1}\right|=2$. If $\left|\mathrm{V}_{2}\right| \geq 2$, then proceeding as before $\left|\mathrm{V}_{2}\right|=2$ and $\mathrm{G}=\mathrm{P}_{4}$. But $\chi_{\text {spd }}\left(\mathrm{P}_{4}\right)=3$, a contradiction. Therefore $\left|\mathrm{V}_{2}\right| \leq 1$. Hence $\left|\mathrm{V}_{2}\right|=1$ we get $\mathrm{G}=\mathrm{P}_{3}$. If $\left|\mathrm{V}_{1}\right|=1$, then $\mathrm{G}=\mathrm{P}_{2}$ or P_{3}. Therefore $\chi_{\mathrm{spd}}(\mathrm{G})=2$ if and only if $\mathrm{G}=\mathrm{P}_{2}$ or P_{3}.

Theorem 1.6.Let G be a graph with full degree vertex, say u. Then $\chi_{\text {spd }}(G)=n$ if and only if the subgraph induced by a vertex of G other than u has no isolates.

Proof: Suppose G has a full degree vertex say u. Let $v_{1}, v_{2}, \ldots, v_{n-1}$ are the vertices of G adjacent with u. Then no two vertices $\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}, \mathrm{i} \neq \mathrm{j}$ belong to the same color class of a resolving semi strong color partition of G .

Case1:Suppose the subgraph induced by vertices of G other than u has an isolate say v_{1}.
Let $\Pi=\left\{\left\{u, v_{1}\right\},\left\{\mathrm{v}_{2}\right\}, \ldots,\left\{\mathrm{v}_{\mathrm{n}-1}\right\}\right\}$. By a hypothesis, v_{i} is adjacent with u for every $\mathrm{i}, \mathrm{v}_{\mathrm{i}}$ is not adjacent with v_{1} for any i. Clearly u, v_{1} are resolved by any $v_{i},(i \geq 2)$. Therefore,$\chi_{\text {spd }}(G)=n-1$.

Case 2: Suppose the subgraph induced by vertices of G other than u has no isolate.
Then Π is not a semi strong color partition of G .Therefore, $\Pi_{1}=\left\{\{\mathrm{u}\},\left\{\mathrm{v}_{1}\right\}, \ldots,\left\{\mathrm{v}_{\mathrm{n}-1}\right\}\right\}$ is a resolving semi strong color partition of G and it is minimum. That is $\chi_{\mathrm{spd}}(\mathrm{G})=\mathrm{n}$.

Theorem 1.7.Let G be a connected graph. $\chi_{\text {spd }}(\mathrm{G})=\mathrm{n}$ if and only if $\mathrm{N}(\mathrm{G})=\mathrm{K}_{\mathrm{n}}$.
Proof: Let $\chi_{\text {spd }}(\mathrm{G})=\mathrm{n}$. Let $\mathrm{V}(\mathrm{G})=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right\}$. Suppose $\operatorname{diam}(\mathrm{G})=\mathrm{k} \geq 3$.Let $\mathrm{u}=\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{k}+1}=\mathrm{v}$ be a diametrical path in G. Let $\Pi=\left\{\{\mathrm{u}, \mathrm{v}\},\left\{\mathrm{V}_{2}\right\}, \ldots,\left\{\mathrm{V}_{\mathrm{n}-1}\right\}\right\}\left\{\{\mathrm{u}, \mathrm{v}\},\left\{\mathrm{V}_{2}\right\}, \ldots,\left\{\mathrm{V}_{\mathrm{n}-1}\right\}\right\}$ where $\mathrm{V}_{2}, \ldots, \mathrm{~V}_{\mathrm{n}-1}$ are singletons .u and v are resolved by $\left\{\mathbf{u}_{2}\right\}$. Then Π is are solving semi strong color partition of G . Therefore, $\chi_{\mathrm{spd}}(\mathrm{G}) \leq \mathrm{n}-1$, a contradiction. Therefore, $\operatorname{diam}(\mathrm{G}) \leq 2$. Suppose u_{1} and u_{2} are adjacent and $\mathrm{u}_{1} \mathrm{u}_{2}$ is not the edge of a triangle. Let $\Pi_{1}=\left\{\left\{u_{1}, u_{2}\right\}, V_{2}, \ldots, V_{n-1}\right\}$ where $V_{2}, \ldots, V_{n-1}, u_{1}$ and u_{2} are resolved by $\left\{u_{3}\right\}$ where u_{1} is adjacent with u_{3} and u_{2} is not adjacent with u_{3}. Then Π_{1} is a resolving semi strong color partition of G , a contradiction.

RESEARCHERID

Let $|V(G)| \geq 4$. If u_{1} and u_{2} are adjacent. Then $u_{1} u_{2}$ is an edge of triangle. Therefore, $N(G)=K_{n}$.
Suppose $|V(G)|=3$. Then $G=P_{3}$ or $K_{3} . \chi_{\text {spd }}\left(P_{3}\right)=2<3$. Therefore, $G=K_{3}$. Therefore, $N(G)=K_{n}$.
The converse is obvious.
Theorem 1.8.For $m \geq 3, \chi_{\text {spd }}\left(K_{a 1}, a 2, \ldots, a m\right)=a_{1}+a_{2}+\ldots+a_{m}$.
Proof: $\chi_{\mathrm{s}}\left(\mathrm{K}_{\mathrm{a} 1}, \mathrm{a} 2, \ldots, \mathrm{am}_{\mathrm{m}}\right)=\mathrm{a}_{1}+\mathrm{a}_{2}+\ldots+\mathrm{a}_{\mathrm{m}}$. Further $\chi_{\mathrm{s}}\left(\mathrm{K}_{\mathrm{a}} 1, \mathrm{a} 2, \ldots, \mathrm{am}\right) \leq \chi_{\mathrm{spd}}\left(\mathrm{K}_{\mathrm{a}}, \mathrm{a} 2, \ldots, \mathrm{am}\right)$.
Therefore, $\chi_{\mathrm{spd}}\left(\mathrm{K}_{\mathrm{a}} 1, \mathrm{a} 2, \ldots, \mathrm{am}\right)=\mathrm{a}_{1}+\mathrm{a}_{2}+\ldots+\mathrm{a}_{\mathrm{m}}$.
Theorem 1.9.Let $G=K_{m}\left(a_{1}, a_{2}, \ldots, a_{m}\right)$. Then $\chi_{\text {spd }}(G)=m+\max \left\{a_{i}\right\}, 1 \leq i \leq m$.
Proof: Let $G=K_{m}\left(a_{1}, a_{2}, \ldots, a_{m}\right)$. Let $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{m}, u_{1,1}, u_{1,2}, \ldots, u_{1, a 1}, \ldots, u_{m, 1}, u_{m, 2}, \ldots, u_{m, a m}\right\}$ where $V\left(K_{m}\right)=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$. Let $\Pi=\left\{\left\{u_{1}\right\},\left\{u_{2}\right\}, \ldots,\left\{u_{m}\right\},\left\{u_{1,1}, u_{2,1}, \ldots, u_{m, 1}\right\}, \ldots,\right\}$.Then Π is a resolving semi strong color partition of G. Therefore, $\chi_{\text {spd }}(G) \leq m+\max \left\{\mathrm{a}_{\mathrm{i}}\right\}, 1 \leq \mathrm{i} \leq \mathrm{m}$. Since $\chi_{\mathrm{s}}(\mathrm{G}) \leq \chi_{\text {spd }}(\mathrm{G})$ and $\chi_{\mathrm{s}}(\mathrm{G})=\mathrm{m}+\max \left\{\mathrm{a}_{\mathrm{i}}\right\}, 1 \leq \mathrm{i} \leq \mathrm{m}$. Therefore, $\chi_{\text {spd }}(\mathrm{G})=\mathrm{m}+\max \left\{\mathrm{a}_{\mathrm{i}}\right\}, 1 \leq \mathrm{i} \leq \mathrm{m}$.

REFERENCES

1. C. Berge, Graphs and Hyper graphs, North Holland, Amsterdam, 1973.
2. R. C. Brigham, G. Chartrand, R. D. Dutton and P. Zhang, Resolving domination in graphs,Math.Bohem. To appear.
3. G. Chartrand, E. Salehi and P. Zhang, The partition dimension of a graph, Aequationes Math. 59 (2000) 4554.
4. G. Jothilakshmi, A. P. Pushpalatha, S. Suganthi and V. Swaminathan, (k,r)Semi Strong Chromatic Number of a Graph, International Journal of ComputerApplications, Vol. 21, No. 2, 2011.
5. E. Sampathkumar and L. PushpaLatha, Semi-Strong Chromatic Number ofa Graph, Indian Journal of Pure and Applied Mathematics, 26(1) : 35-40, 1995.
6. E. Sampathkumar and C. V. Venkatachalam, Chromatic partition of a graph,Discrete Mathematics, 74, 1989, 227-239..
